Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.7 The Second Shifting Theorem - Problems - Page 704: 1

Answer

$\dfrac{e^{-2s}-e^{-3s}}{s}$

Work Step by Step

$L (u_a(t)) =\int_0^{\infty} e^{-st} u_a(t) dt \\=\int_0^{\infty} e^{-st} dt\\=[\dfrac{e^{-st}}{-s}]_0^{\infty}$ Now, $L( u_2(t)-u_3(t)]=\dfrac{e^{-2s}}{s}-\dfrac{e^{-3s}}{s}\\=\dfrac{e^{-2s}-e^{-3s}}{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.