Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.10 Chapter Review - Additional Problems - Page 718: 9

Answer

$ =\frac{e^{-3s}(4s^2+5s+2)}{s^3}+\frac{s+1}{s^2}$

Work Step by Step

Obtain: $F(s)=\int^{\infty}_0 e^{-st}f(t)dt\\ =\int^3_0 e^{-st}(t+1)dt+\int^{\infty}_3 e^{-st}(t^2-1) dt\\ =\int^3_0 e^{-st}(t+1)dt+\lim \int^n_3 e^{-st}(t^2-1)dt\\ =[-\frac{t+1}{s}e^{-st}]^3_0+\frac{1}{s}\int^3_0 e^{-st}dt+\lim [(-\frac{t^2-1}{s}e^{-st})^n_3+\frac{2}{3}\int^n_3 te^{-st}dt)]\\ =(-\frac{4}{3}e^{-3s}+\frac{1}{s})+(-\frac{1}{s^2}e^{-3s}+\frac{1}{s^2})+(\frac{8}{s}e^{-3s}+\frac{6}{s^2}e^{-3s}+\frac{2}{s^3}e^{-3s})\\ =\frac{e^{-3s}(4s^2+5s+2)}{s^3}+\frac{s+1}{s^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.