Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.10 Chapter Review - Additional Problems - Page 718: 1

Answer

$\frac{3}{s^2}-\frac{4}{s}$

Work Step by Step

Given: $f(t)=3t-4$ Obtain: $F(s)=\int^{\infty}_0 e^{-st}f(t)dt\\ =\int^{\infty}_0 e^{-st} (3t-4)dt\\ =3\int^{\infty}_0 te^{-st}dt-4\int^{\infty}_0e^{-st}dt\\ =3\lim [-\frac{t}{s}e^{-st}]^n_0-\frac{3}{s^2}\lim[e^{-st}]^n_0+\frac{4}{s}\lim [e^{-st}]^n_0\\ =3\lim [-\frac{n}{s}e^{-sn}]-\frac{3}{s^2}\lim[e^{-sn}-1]+\frac{4}{s}\lim [e^{-sn}-1]\\ =\frac{3}{s^2}-\frac{4}{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.