Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.10 Chapter Review - Additional Problems - Page 718: 10

Answer

$\frac{2}{s}(e^{-2s}-e^{-s})+1$

Work Step by Step

Obtain: $F(s)=\int^{\infty}_0 e^{-st}f(t)dt\\ =\int^1_0 2e^{-st}dt+\int^2_1 e^{-st}(1-t) dt+\int^{\infty}_2 0e^{-st} dt\\ =[\frac{e^{-st}}{-s}]^1_0+[\frac{1-t}{-s}e^{-st}]^2_1-\frac{t}{s}[\frac{e^{-st}}{-s}]^2_1+0\\ =\frac{1}{s}(-e^{-s}+e^{-2s}+1+e^{-2s}-e^{-s}]\\ =\frac{2}{s}(e^{-2s}-e^{-s})+1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.