Answer
$\frac{2}{s}(e^{-2s}-e^{-s})+1$
Work Step by Step
Obtain: $F(s)=\int^{\infty}_0 e^{-st}f(t)dt\\
=\int^1_0 2e^{-st}dt+\int^2_1 e^{-st}(1-t) dt+\int^{\infty}_2 0e^{-st} dt\\
=[\frac{e^{-st}}{-s}]^1_0+[\frac{1-t}{-s}e^{-st}]^2_1-\frac{t}{s}[\frac{e^{-st}}{-s}]^2_1+0\\
=\frac{1}{s}(-e^{-s}+e^{-2s}+1+e^{-2s}-e^{-s}]\\
=\frac{2}{s}(e^{-2s}-e^{-s})+1$