Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.10 Chapter Review - Additional Problems - Page 718: 7

Answer

$=\frac{1}{2s}-\frac{s}{2(s^2+4a^2)}$

Work Step by Step

Given: $f(t)=\sin^2 at$ Obtain: $F(s)=\int^{\infty}_0 e^{-st}f(t)dt\\ =\int^{\infty}_0 e^{-st} (\sin^2 at)dt\\ =\frac{1}{2}[\lim \int^{\infty}_0 e^{-st}dt-\int^n_0 e^{-st}\cos 2at dt]\\ =\frac{1}{2s}-\frac{1}{2}\lim \int^{\infty}_0 e^{-st}\cos 2at dt\\ =\frac{1}{2s}-\frac{s}{2(s^2+4a^2)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.