Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 10 - The Laplace Transform and Some Elementary Applications - 10.10 Chapter Review - Additional Problems - Page 718: 17

Answer

$\frac{2}{s}+\frac{2e^{-s-1}}{s+1}-\frac{2e^{-s}}{s}$

Work Step by Step

Given: $f(t)=2+2(e^{-t}-1)u_1(t)$ Rewrite as: $f(t)=2+2e^{-t}u_1(t)-2u_1(t)$ $L[2e^{-t}u_1(t)=e^{-s}L[F(t)]$ With $F(t)=2e^{-t}$ we have: $L[f(s)]=2e^{-s}L[e^{-t}]\\ =\frac{2e^{-s-1}}{s+1}$ Using the Convolution Theorem $L[f(s)]=L[2+2(e^{-t}-1)u_1(t)]\\ =\frac{2}{s}+\frac{2e^{-s-1}}{s+1}-\frac{2e^{-s}}{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.