Answer
See an explanation
Work Step by Step
$A(t)=P(1+\frac{r}{n})^{nt},$
a.
$P=1000, r=0.05, n=12, t=\frac{8}{12},$
$A(\frac{8}{12})=1000(1+\frac{0.05}{12})^{12\times \frac{8}{12}},$
$A(\frac{8}{12})=1000(1.0042)^8=1034.1$
b.
$n=4, t=\frac{3}{4}$
$A(9)=1000=P(1+\frac{0.05}{4})^{4\times \frac{3}{4}}$,
$1000=P(1.0042)^3$
$P=963.42$
c. $2=(1+0.06)^t,$
$\log 2=t\log(1.06),$
$t=11.896$