College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 6 - Test - Page 502: 17

Answer

$x=\frac{1- \sqrt{13}}{2}$ or $x=\frac{1+ \sqrt{13}}{2}$

Work Step by Step

$\log(x^2+3)=\log(x+6),x>-6$ $\log(x^2+3)-\log(x+6)=0,$ $\log(\frac{x^2+3}{x+6})=0,$ raising both sides to the power of $10.$ $10^{\log(\frac{x^2+3}{x+6})}=10^0,$ $\frac{x^2+3}{x+6}=1,$ $x^2+3=x+6,$ $x^2-x-3=0,$ Solving the quadratic equation using the quadratic formula, $x=\frac{-b\pm \sqrt{b^2-4ac}}{2a},$ $x=\frac{1\pm \sqrt{1-4(-3)(1)}}{2}=\frac{1\pm \sqrt{13}}{2}$ Both solutions fit as they belong to the domain.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.