College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 6 - Review Exercises - Page 500: 27

Answer

$\ln \left(16\sqrt{\dfrac{x^2+1}{x^2-4x}}\right)$

Work Step by Step

We can write the expression as a single logarithm using the rules: $\log_b(m)+\log_b(n)=\log_b(m\cdot n)$ and $\log_b(m)+\log_b(n)=\log_b(\frac{m}{n})$ First, we solve the expression inside the square brackets: $\dfrac{1}{2}\ln \left(x^2+1\right)-4\ln\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\left[\ln(x-4)+\ln x\right]=$ $\dfrac{1}{2}\ln \left(x^2+1\right)-4\ln\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\left[\ln((x-4)\cdot x)\right]=$ $\dfrac{1}{2}\ln \left(x^2+1\right)-4\ln\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\ln(x^2-4x)$ Now, we use the rule $a\log_bm=\log_bm^a$: $\ln \left(x^2+1\right)^{\frac{1}{2}}-\ln\left(\dfrac{1}{2}\right)^4-\ln(x^2-4x)^{\frac{1}{2}}=$ $\ln \left((x^2+1)^{\frac{1}{2}}\div\dfrac{1}{2^4}\div(x^2-4x)^{\frac{1}{2}}\right)$ Simplify: $\ln \left((x^2+1)^{\frac{1}{2}}\cdot16\cdot \dfrac{1}{(x^2-4x)^{\frac{1}{2}}}\right)=$ $\ln \left(16\sqrt{\dfrac{x^2+1}{x^2-4x}}\right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.