Answer
$f^{-1}(x)=\frac{2x+3}{5x-2}$
Work Step by Step
$f(x)=\frac{2x+3}{5x-2}$
$y=\frac{2x+3}{5x-2},$
$x=\frac{2y+3}{5y-2},$
$5xy-2x=2y+3,$
$5xy-2y=3+2x,$
$y(5x-2)=2x+3,$
$y=\frac{2x+3}{5x-2}=f^{-1}(x),$
$(f^{-1}\circ f)(x)=\frac{2(\frac{2x+3}{5x-2})+3}{5(\frac{2x+3}{5x-2})-2},$
$(f^{-1}\circ f)(x)=\frac{19x}{19}=x$