College Algebra (10th Edition)

Published by Pearson
ISBN 10: 0321979478
ISBN 13: 978-0-32197-947-6

Chapter 5 - Section 5.5 - The Real Zeros of a Polynomial Function - 5.5 Assess Your Understanding: 34

Answer

$\pm 1;\pm{3}$

Work Step by Step

In a polinomial function like $f\left( x\right) =a_{n}x^{n}+a_{n-1}x^{n-1}+\ldots a_{1}x+a_{0}$ If $p/q$, in lowest terms, is a rational zero of $f$, then $p$ must be a factor of $a_0 $ and $q$ must be a factor of $a_n$. Here $f\left( x\right) =x^{5}-x^{4}+2x^{2}+3\Rightarrow a_{n}=1;a_{0}=3 $ Factors of $a_0$ are $\pm 3$, $\pm1$ Factors of $a_n$ are $\pm1 $ So the potential rational zeros are: $\pm 1;\pm{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.