Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 7 - 7.2 - Verifying Trigonometric Identities - 7.2 Exercises - Page 520: 34

Answer

The identity is verified. $cot~x-tan~x=sec~x(csc~x-2~sin~x)$

Work Step by Step

$cos^2x+sin^2x=1$ $cos^2x=1-sin^2x$ $cot~x-tan~x=\frac{cos~x}{sin~x}-\frac{sin~x}{cos~x}=\frac{cos~x}{sin~x}\frac{cos~x}{cos~x}-\frac{sin~x}{cos~x}\frac{sin~x}{sin~x}=\frac{cos^2x}{sin~x~cos~x}-\frac{sin^2x}{cos~x~sin~x}=\frac{cos^2x-sin^2x}{cos~x~sin~x}=\frac{1-sin^2x-sin^2x}{cos~x~sin~x}=\frac{1-2~sin^2x}{cos~x~sin~x}=\frac{1}{cos~x~sin~x}-\frac{2~sin^2x}{cos~x~sin~x}=sec~x~csc~x-\frac{1}{cos~x}~(2~sin~x)=sec~x~csc~x-sec~x~(2~sin~x)=sec~x(csc~x-2~sin~x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.