Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 6 - 6.3 - Trigonometric Functions of Any Angle - 6.3 Exercises - Page 454: 57

Answer

$\sin \frac{2\pi}{3}=\frac{\sqrt 3}{2}$, $\cos \frac{2\pi}{3}=-\frac{1}{2}$ $\tan \frac{2\pi}{3}=-\sqrt {3}$

Work Step by Step

Reference angle $\theta' =\pi-\theta$ if $\theta $ is in quadrant II. $\implies \theta'=\pi-\frac{2\pi}{3}=\frac{\pi}{3}$ Sine is positive, cosine and tangent are negative in quadrant II. $\implies \sin \frac{2\pi}{3}=+\sin \frac{\pi}{3}=\frac{\sqrt 3}{2}$, $\cos \frac{2\pi}{3}=-\cos \frac{\pi}{3}=-\frac{1}{2},$ $\tan \frac{2\pi}{3}=-\tan \frac{\pi}{3}=-\sqrt {3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.