Algebra: A Combined Approach (4th Edition)

Published by Pearson
ISBN 10: 0321726391
ISBN 13: 978-0-32172-639-1

Chapter 10 - Section 10.3 - Simplifying Radical Expressions - Exercise Set: 71

Answer

$\dfrac{3\sqrt{100x^{2}}}{2\sqrt{2x^{-1}}}=\dfrac{15}{2}x\sqrt{2x}$

Work Step by Step

$\dfrac{3\sqrt{100x^{2}}}{2\sqrt{2x^{-1}}}$ Rewrite this expression as $\dfrac{3}{2}\sqrt{\dfrac{100x^{2}}{2x^{-1}}}$: $\dfrac{3\sqrt{100x^{2}}}{2\sqrt{2x^{-1}}}=\dfrac{3}{2}\sqrt{\dfrac{100x^{2}}{2x^{-1}}}=...$ Evaluate the division inside the square root: $...=\dfrac{3}{2}\sqrt{50x^{2+1}}=\dfrac{3}{2}\sqrt{50x^{3}}=...$ Rewrite the expression inside the square root as $25\cdot2\cdot x^{2}\cdot x$ and simplify: $...=\dfrac{3}{2}\sqrt{25\cdot2\cdot x^{2}\cdot x}=\dfrac{3}{2}\cdot5\cdot x\sqrt{2x}=\dfrac{15}{2}x\sqrt{2x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.