Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 7 - Exponential and Logarithmic Functions - 7-4 Properties of Logarithms - Practice and Problem-Solving Exercises - Page 467: 58

Answer

$\log_4{\left(\dfrac{m^x\sqrt[y]n}{p}\right)}$

Work Step by Step

Recall the basic properties of logarithms (pg. 462): Product Property: $\log_b{mn}=\log_b{m}+\log_b{n}$ Quotient Property: $\log_b{\frac{m}{n}}=\log_b{m}-\log_b{n}$ Power Property: $\log_b{m^n}=n\log_b{m}$ First, apply the power property to obtain: : $\log_4{m^x}+\log_4{n^{\frac{1}{y}}}-\log_4{p}$ Next, apply the product property to obtain: $\log_4{(m^x\cdot n^{\frac{1}{y}})}-\log_4{p}$ Finally, apply the quotient property: $=\log_4{\left(\dfrac{m^x\cdot n^{1/y}}{p}\right)}$ $=\log_4{\left(\dfrac{m^x\cdot \sqrt[y]n}{p}\right)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.