Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 7 - Exponential and Logarithmic Functions - 7-4 Properties of Logarithms - Practice and Problem-Solving Exercises - Page 467: 57

Answer

$\log_x{\left(\frac{2\sqrt{y}}{z^3}\right)}$

Work Step by Step

Recall the product property of logarithms (pg. 462): $\log_b{mn}=\log_b{m}+\log_b{n}$ Applying this property, we get: $\frac{1}{2}(\log_x{4}+\log_{x}{y})-3\log_x{z}=\frac{1}{2}\log_x{4y}-3\log_{x}{z}$ Next, recall the power property of logarithms (pg. 462): $\log_b{m^n}=n\log_b{m}$ Applying this property, we get: $\frac{1}{2}\log_x{4y}-3\log_{x}{z}\\ =\log_x{(4y)^{1/2}}-\log_x{z^3}\\ =\log_x{\sqrt{4y}}-\log_x{z^3}$ Finally, recall the quotient property of logarithms (pg. 462): $\log_b{\frac{m}{n}}=\log_b{m}-\log_b{n}$ Applying this property, we get: $\log_x{\sqrt{4y}}-\log_x{z^3}\\ =\log_x{\left(\frac{\sqrt{4y}}{z^3}\right)}\\ =\log_x{\left(\frac{2\sqrt{y}}{z^3}\right)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.