Section Navigation

Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 5 - Polynomials and Polynomial Functions - 5-4 Dividing Polynomials - Practice and Problem-Solving Exercises - Page 310: 76

Answer

$x=\left\{ -\dfrac{5}{7},1 \right\}$

Work Step by Step

Using $ax^2+bx+c=0,$ the given equation, \begin{align*}\require{cancel} 7x^2-2x-5=0 ,\end{align*} the values of $a,b, \text{ and }c $ are $a= 7 ,$ $b= -2 ,$ and $c= -5 .$ Using the Quadratic Formula which is given by $x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a},$ then \begin{align*} x&=\dfrac{-(-2)\pm\sqrt{(-2)^2-4(7)(-5)}}{2(7)} \\\\&= \dfrac{2\pm\sqrt{4+140}}{14} \\\\&= \dfrac{2\pm\sqrt{144}}{14} \\\\&= \dfrac{2\pm\sqrt{12^2}}{14} \\\\&= \dfrac{2\pm12}{14} \end{align*} \begin{array}{lcl} \dfrac{2-12}{14} &\text{ OR }& \dfrac{2+12}{14} \\\\ =\dfrac{-10}{14} && =\dfrac{14}{14} \\\\ =-\dfrac{5}{7} && =1 \end{array} The solutions are $ x=\left\{ -\dfrac{5}{7},1 \right\} .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.