Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 5 - Polynomials and Polynomial Functions - 5-4 Dividing Polynomials - Practice and Problem-Solving Exercises - Page 310: 75

Answer

$x=\left\{ -1-\sqrt{3}, -1+\sqrt{3} \right\}$

Work Step by Step

Using $ax^2+bx+c=0,$ the given equation, \begin{align*}\require{cancel} 2x^2+4x-4=0 ,\end{align*} the values of $a,b, \text{ and }c $ are $a= 2 ,$ $b= 4 ,$ and $c= -4 .$ Using the Quadratic Formula which is given by $x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a},$ then \begin{align*} x&=\dfrac{-4\pm\sqrt{4^2-4(2)(-4)}}{2(2)} \\\\&= \dfrac{-4\pm\sqrt{16+32}}{4} \\\\&= \dfrac{-4\pm\sqrt{48}}{4} \\\\&= \dfrac{-4\pm\sqrt{16\cdot3}}{4} \\\\&= \dfrac{-4\pm\sqrt{4^2\cdot3}}{4} \\\\&= \dfrac{-4\pm4\sqrt{3}}{4} \\\\&= \dfrac{-\cancel4^1\pm\cancel4^1\sqrt{3}}{\cancel4^1} &\text{ (divide by $4$)} \\\\&= -1\pm\sqrt{3} .\end{align*} The solutions are $ x=\left\{ -1-\sqrt{3}, -1+\sqrt{3} \right\} .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.