Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 5 - Circular Motion; Gravitation - Problems - Page 133: 23

Answer

$v_{min}=16.4\frac{m}{s}=59.0\frac{km}{h}$ $v_{max}=31.7\frac{m}{s}=114\frac{km}{h}$

Work Step by Step

The angle at which the road is banked can be calculated by the formula $\theta=\arctan\Big(\frac{v^2}{rg}\Big)$ $85\frac{km}{h}\times \frac{1000m}{1km}\times \frac{1h}{3600s}=23.6\frac{m}{s}$ $\theta=\arctan\Big(\frac{(23.6\frac{m}{s})^2}{78m\times 9.8\frac{m}{s^2}}\Big)=36.1^o$ When driving at higher speed with the same radius, you require a greater centripetal acceleration than the normal force. Therefore, the force of friction would act downward along the incline. $\sum F_y=F_N\cos(\theta)-F_g-F_f\sin(\theta)=0N$ because there is no acceleration in the y direction Rearranging, $F_N=\frac{mg}{\cos(\theta)-\mu_s\sin(\theta)}$ $\sum F_x=F_N\sin(\theta)+F_f\cos(\theta)=\frac{mv^2}{r}$ $F_N=\frac{mv^2}{r(\sin(\theta)+\mu_s\cos(\theta))}$ $\frac{mg}{\cos(\theta)-\mu_s\sin(\theta)}=\frac{mv^2}{r(\sin(\theta)+\mu_s\cos(\theta))}$ Rearranging and solving for $v_{max}$ $v_{max}=\sqrt{(78m)(9.8\frac{m}{s^2})\frac{\sin(36.1)+0.3\cos(36.1)}{\cos(36.1)-0.3\sin(36.1)}}=31.7\frac{m}{s}$ For minimum velocity, the force of friction is acting in the opposite direction so the sign is negative. $v_{min}=\sqrt{(78m)(9.8\frac{m}{s^2})\frac{\sin(36.1)-0.3\cos(36.1)}{\cos(36.1)+0.3\sin(36.1)}}=16.4\frac{m}{s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.