Answer
$\mathcal{l}\geq 3$
$3 \leq \mathcal{l}\leq n-1$
$m_{s}=-\frac{1}{2},+\frac{1}{2}$
Work Step by Step
The values of $m_{\mathcal{l}}$ range from $-\mathcal{l}$ to $\mathcal{l}$. Thus, for $m_{\mathcal{l}}=-3$, $\mathcal{l}\geq 3$.
The possible values of $\mathcal{l}$ are from 0 to (n-1), so for $\mathcal{l}\geq 3$ we need $n \geq 4$.
As always, $\mathcal{l}\leq (n-1)$, so, in summary, $3 \leq \mathcal{l}\leq n-1$.
Values of $m_{s}$ are $-\frac{1}{2},+\frac{1}{2}$.