Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 26 - The Special Theory of Relativity - Problems - Page 768: 40

Answer

$E_k=-6.30\%$ $p=-3.97\%$

Work Step by Step

Classical Formulas: $E_k=\frac{mv^2}{2}$ $E_k=\frac{(1.67\times10^{-27}kg)(8.65\times 10^7\frac{m}{s})^2}{2}=6.25\times10^{-12}J$ $p=mv$ $p=(1.67\times10^{-27}kg)(8.65\times 10^7\frac{m}{s})=$ $1.45\times10^{-19}kg\frac{m}{s}$ Special Theory of Relativity $\gamma=\frac{1}{\sqrt{1 - \frac{(8.65\times 10^7\frac{m}{s})^2}{c^2}}}=1.044$ $E_k=(\gamma-1)mc^2=(1.044-1)(1.67\times10^{-27}kg)(2.998\times10^8\frac{m}{s})^2=6.67\times10^{-12}J$ $p=\gamma mv=1.044\times1.45\times10^{-19}kg\frac{m}{s}$ $=1.51\times10^{-19}kg\frac{m}{s}$ Percent Error $E_k=\frac{E_{kc}-E_{ks}}{E_{ks}}=\frac{6.25\times10^{-12}J-6.67\times10^{-12}J}{6.67\times10^{-12}J}\times100\%=-6.30\%$ $p=\frac{p_c-p_s}{p_s}=\frac{1.45\times10^{-19}-1.51\times10^{-19}}{1.51\times10^{-19}}\times100\%=-3.97\%$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.