Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)

Published by Pearson
ISBN 10: 0133942651
ISBN 13: 978-0-13394-265-1

Chapter 30 - Electromagnetic Induction - Exercises and Problems - Page 870: 21

Answer

$2.67\times10^{-3}$ Tesla per second

Work Step by Step

Faraday's law can be written as $\varepsilon_{induced} = \displaystyle |\frac{d\Phi_B}{dt}| = |\vec{A}\frac{d\vec{B}}{dt} + \vec{B}\frac{d\vec{A}}{dt}| = \oint\vec{E}\cdot d\vec{s}$ where $\vec{s}$ is the arc length. In this problem, the cross-sectional area is not changing so $\displaystyle \frac{d\vec{A}}{dt} = 0$ which leaves us with $\displaystyle \varepsilon = \oint\vec{E}\cdot d\vec{s} = \vec{A}\frac{d\vec{B}}{dt}$ Solving for $\displaystyle \frac{d\vec{B}}{dt}$ gives us (since $\vec{s}$ is arc length, the arc length of an entire circle is equal to its circumference, $2\pi r$): $\displaystyle \vec{E}\vec{s}= \vec{A}\frac{d\vec{B}}{dt}$ $\displaystyle \frac{\vec{E}\vec{s}}{\vec{A}}= \frac{\vec{E}(2\pi r)}{\pi r^2} = \frac{2\vec{E}}{r} = \frac{d\vec{B}}{dt}$ $\displaystyle \frac{d\vec{B}}{dt} = \frac{2(2\times10^{-3})}{1.5}= 2.67\times10^{-3}$ Tesla per second
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.