Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)

Published by Pearson
ISBN 10: 0133942651
ISBN 13: 978-0-13394-265-1

Chapter 30 - Electromagnetic Induction - Exercises and Problems - Page 870: 17

Answer

a.) $I(t) = 5\times10^{-4}\pi(1+t)$ b.) $I(5) = 9.4\times10^{-3}$ Amps $I(10) = 1.7\times10^{-2}$ Amps

Work Step by Step

Recall that Faraday's law is $\displaystyle \varepsilon_{induced} = |\frac{d\Phi_B}{dt}| = |\vec{A}\frac{d\vec{B}}{dt} + \vec{B}\frac{d\vec{A}}{dt}|$ In this problem, the cross-sectional area of the loop isn't changing and we have an N-coil loop so our equation becomes $\displaystyle \varepsilon_{induced} = N\cdot|\vec{A}\frac{d\vec{B}}{dt}|$ Since we know the total resistance, we can say $I(t) = \displaystyle \frac{\varepsilon_{induced}}{R} = \frac{N\vec{A}}{R}\cdot\frac{d\vec{B}}{dt} = \frac{N\vec{A}}{R}\vec{B}$ $'(t)$ --- a.) Given $\vec{B}(t) = 0.020 + 0.010t^2 \qquad\rightarrow\qquad\vec{B}$ $'(t) = 0.020 + 0.020t$ $\quad \displaystyle \vec{A} = \pi (\frac{d}{2})^2 = \pi(0.025)^2$ $\therefore I(t) \displaystyle = \frac{20[\pi(0.025)^2]}{0.50}(0.020 + 0.020t) = 2.5\times10^{-2}\pi\cdot0.02(1+t)$ $I(t) = 5\times10^{-4}\pi(1+t)$ b.) $I(5) = 5\times10^{-4}\pi(1+(5)) = 9.4\times10^{-3}$ Amps $I(10) = 5\times10^{-4}\pi(1+(10)) = 1.7\times10^{-2}$ Amps
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.