Answer
See the detailed answer below.
Work Step by Step
$$\color{blue}{\bf [a]}$$
To calculate the wavelength, we need to use the formula of
$$
\Delta E =E_{\rm emitted}= \frac{hc}{\lambda}
$$
So,
$$
\lambda = \frac{hc}{\Delta E}
$$
For each transition, the energy difference \( \Delta E \) is given by:
$$
\Delta E = E_{\text{higher}} - E_{\text{lower}}
$$
So
$$
\lambda = \frac{hc}{(E_{\text{higher}} - E_{\text{lower}})e}
$$
And to get it in nanometers,
$$
\lambda = \frac{hc}{(E_{\text{higher}} - E_{\text{lower}})e(10^{-9})}
$$
Plug the known
$$
\boxed{\lambda = \frac{(6.63\times 10^{-34})(3\times 10^8)}{(E_{\text{higher}} - E_{\text{lower}})(1.6\times 10^{-19})(10^{-9})}}
$$
Assuming that the allowed transitions must satisfy the selection rule $ \Delta l = \pm 1 $, the angular momentum quantum number must change by 1 during the transition.
$$\color{blue}{\bf [b]}$$
To Identify the spectral region (infrared, visible, or ultraviolet), we need to recall that
- Infrared (IR) at: $\lambda > 700 \, \text{nm} $
- Visible at: $ 400 \, \text{nm}\leq \lambda \leq 700 \, \text{nm} $
- Ultraviolet (UV) at: $ \lambda< 400 \, \text{nm} $
$$\color{blue}{\bf [c]}$$
The absorption spectrum only contains transitions that end in the ground $ 2s $ state, so only the $ 2p \to 2s $, $ 3p \to 2s $, and $ 4s \to 2p $ transitions are included in the absorption spectrum.
Now, let’s calculate for each transition.
See the table below.
\begin{array}{|c|c|c|c|}
\hline
\text{Transition} &\color{blue}{\bf [a]} \;\lambda\;{\rm (nm)} & \color{blue}{\bf [b]}\text{ Type} &\color{blue}{\bf [c]} \text{Absorption} \\
\hline
4s \rightarrow 3p & 2437 & \text{IR} & \text{No}\\\hline
4s \rightarrow 2p & 499 & \text{Visible } & \text{No} \\\hline
3d \rightarrow 3p & 24862 & \text{IR} & \text{No} \\\hline
3d \rightarrow 2p & 612 & \text{Visible } & \text{No} \\\hline
3p \rightarrow 3s & 2702 & \text{IR} & \text{No} \\\hline
3p \rightarrow 2s & 325 & \text{UV} & \text{Yes} \\\hline
3s \rightarrow 2p & 818 & \text{IR} & \text{No} \\\hline
2p \rightarrow 2s & 672 & \text{Visible } & \text{Yes} \\\hline
\hline
\end{array}