Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 41 - Atomic Physics - Exercises and Problems - Page 1246: 37

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ A sodium atom in the $ 6s $ state can undergo downward transitions to lower energy states. For typical sodium energy levels, assuming similar to the hydrogen-like levels, the possible downward transitions are: $$\boxed{ 6s \to 3p\quad, \quad 6s \to 4p \quad, \quad 6s \to 5p }$$ $$\color{blue}{\bf [b]}$$ We know that $$ E_{\rm photon} =\Delta E= \frac{hc}{\lambda} $$ Where $ \Delta E $ is the energy difference between the two states. So, $$ \lambda = \frac{hc}{ \Delta E}\tag 1 $$ According to the data provided in the mentioned figure, we can see that $$\Delta E_{\;6s\to 3p}=4.51-2.104=\bf 2.406 \;\rm eV$$ $$\Delta E_{\;6s\to 4p}=4.51-3.75=\bf 0.76\;\rm eV$$ $$\Delta E_{\;6s\to 5p}=4.51-4.34=\bf 0.17\;\rm eV$$ Using these energy differences and (1) to find the emitted wavelengths. $$\lambda_{\;6s\to 3p}= \frac{hc}{ \Delta E_{\;6s\to 3p}}=\dfrac{(6.63\times 10^{-34})(3\times 10^8)}{(2.406 )(1.6\times 10^{-19})}$$ $$\lambda_{\;6s\to 3p}=\color{red}{\bf 517}\;\rm nm$$ $$\lambda_{\;6s\to 4p}= \frac{hc}{ \Delta E_{\;6s\to 4p}}=\dfrac{(6.63\times 10^{-34})(3\times 10^8)}{(0.76)(1.6\times 10^{-19})}$$ $$\lambda_{\;6s\to 4p}=\color{red}{\bf 1636}\;\rm nm$$ $$\lambda_{\;6s\to 5p}= \frac{hc}{ \Delta E_{\;6s\to 5p}}=\dfrac{(6.63\times 10^{-34})(3\times 10^8)}{(0.17)(1.6\times 10^{-19})}$$ $$\lambda_{\;6s\to 5p}=\color{red}{\bf 7313}\;\rm nm$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.