Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 41 - Atomic Physics - Exercises and Problems - Page 1246: 34

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ For a hydrogen atom in the $p$ state ($ l = 1 $), the possible values of the orbital angular momentum component along the z-axis, $ L_z $, are: $$ L_z = m\hbar \quad \text{where} \quad m = 1, 0, -1 $$ Thus, the possible values of $ L_z $ are: $$ L_z = \hbar, 0, -\hbar $$ The spin angular momentum component along the $z$-axis, $ S_z $, for an electron is: $$ S_z = \pm \frac{1}{2} \hbar $$ Now we can calculate the total angular momentum component along the $z$-axis, $ J_z $, which is given by $$ J_z = L_z + S_z=m_j\hbar $$ By combining the possible values of $ L_z $ and $ S_z $, we get the following results as shown in the table below. \begin{array}{|c|c|c|c|} \hline L_z & S_z& m_j & J_z \\ \hline \\\hbar & +\dfrac{1}{2}\hbar & \dfrac{3}{2} & \dfrac{3}{2}\hbar \\\\\hline\\ \hbar & -\dfrac{1}{2}\hbar & \dfrac{1}{2} & \dfrac{1}{2}\hbar \\\\\hline\\ 0 & +\dfrac{1}{2}\hbar& \dfrac{1}{2} & \dfrac{1}{2}\hbar \\\\\hline\\ 0 & -\dfrac{1}{2}\hbar & -\dfrac{1}{2} & -\dfrac{1}{2}\hbar \\\\\hline\\ -\hbar & +\dfrac{1}{2}\hbar & -\dfrac{1}{2} & -\dfrac{1}{2}\hbar \\\\\hline\\ -\hbar & -\dfrac{1}{2}\hbar & -\dfrac{3}{2}& -\dfrac{3}{2}\hbar \\\\\hline \hline \end{array} $$\color{blue}{\bf [b]}$$ Values for $ j = \frac{1}{2} $ and $ j = \frac{3}{2} $ For $ j = \frac{1}{2} $, the values of $ m_j $ can be: $$ m_j = \pm \frac{1}{2} $$ Since $ j $ can only change in integer increments, the possible values of $ J_z $ for $ j = \frac{1}{2} $ are: $$ \boxed{J_z = \frac{1}{2} \hbar, -\frac{1}{2} \hbar} $$ For $ j = \frac{3}{2} $, the values of $ m_j $ can be: $$ m_j = \pm \frac{3}{2}, \pm \frac{1}{2} $$ Thus, the possible values of $ J_z $ for $ j = \frac{3}{2} $ are: $$ \boxed{J_z = \frac{3}{2} \hbar, \frac{1}{2} \hbar, -\frac{1}{2} \hbar, -\frac{3}{2} \hbar} $$ These results show how the total angular momentum component $ J_z $ can take on different values depending on the combination of the orbital and spin angular momentum components.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.