Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 41 - Atomic Physics - Exercises and Problems - Page 1245: 29

Answer

See the detailed answer below.

Work Step by Step

In this problem, we need to find the radial wave function and the radial probability density for 3 different values of $ r $, using the hydrogen atom’s 1s state. $$\color{blue}{\bf [a]}$$ $\underline{\text{For $ r = \frac{1}{2} a_B $}}$ $\bullet$ The radial wave function is given by $$ R_{1s}\left(\frac{1}{2} a_B\right) = \frac{1}{\sqrt{\pi a_B^3}} e^{-\frac{1}{2}} = \frac{0.607}{\sqrt{\pi a_B^3}} $$ $$ R_{1s}\left(\frac{1}{2} a_B\right) =\color{red}{\bf 0.342 }\, a_B^{-3/2} $$ $\bullet$ $\bullet$ The radial probability density is: $$ P_r\left(\frac{1}{2} a_B\right) = 4\pi \left(\frac{a_B}{2}\right)^2 \left( \frac{0.607}{\sqrt{\pi a_B^3}} \right)^2 = \frac{0.368}{a_B} $$ $$ P_r\left(\frac{1}{2} a_B\right) =\color{red}{\bf 0.368}\;a_B^{-1} $$ $\bullet$ $\bullet$ $\bullet$ The probability of finding the electron within a small shell $ \delta r = 0.010\; a_B $ at $ r = \frac{1}{2} a_B $ is: $$ \text{Prob}(r) = P_r\left(\frac{1}{2} a_B\right) \delta r = \frac{0.368}{a_B} (0.010 a_B) $$ $$ \text{Prob}(r) = \color{red}{\bf 3.7 \times 10^{-3}} $$ $$\color{blue}{\bf [b]}$$ $\underline{\text{For $ r = a_B $}}$ $\bullet$ The radial wave function is: $$ R_{1s}(a_B) = \frac{1}{\sqrt{\pi a_B^3}} e^{-1} = \frac{0.368}{\sqrt{\pi a_B^3}} $$ $$ R_{1s}(a_B) =\color{red}{\bf 0.208}\, a_B^{-3/2} $$ $\bullet$$\bullet$ The radial probability density is: $$ P_r(a_B) = 4\pi a_B^2 \left(\frac{0.368}{\sqrt{\pi a_B^3}}\right)^2 = \frac{0.541}{a_B} $$ $$ P_r(a_B) = \color{red}{\bf 0.541}\;a_B^{-1} $$ $\bullet$$\bullet$$\bullet$The probability of finding the electron in a small shell $ \delta r = 0.010\; a_B $ at $ r = a_B $ is: $$ \text{Prob}(r) = P_r(a_B) \delta r = \frac{0.541}{a_B} (0.010 \;a_B) $$ $$ \text{Prob}(r) = \color{red}{\bf 5.41 \times 10^{-3}} $$ $$\color{blue}{\bf [c]}$$ $\underline{\text{For $ r = 2a_B $}}$ $\bullet$ The radial wave function is: $$ R_{1s}(2a_B) = \frac{1}{\sqrt{\pi a_B^3}} e^{-2} = \frac{0.135}{\sqrt{\pi a_B^3}} $$ $$ R_{1s}(2a_B) = \color{red}{\bf 0.076}\, a_B^{-3/2} $$ $\bullet$$\bullet$ The radial probability density is: $$ P_r(2a_B) = 4\pi (2a_B)^2 \left(\frac{0.135}{\sqrt{\pi a_B^3}}\right)^2 = \frac{0.293}{a_B} $$ $$ P_r(2a_B) = \color{red}{\bf 0.293}\;{a_B^{-1}} $$ $\bullet$$\bullet$$\bullet$ The probability of finding the electron in a small shell $ \delta r = 0.010\; a_B $ at $ r = 2a_B $ is: $$ \text{Prob}(r) = P_r(2a_B) \delta r = \frac{0.293}{a_B} (0.010\; a_B) $$ $$ \text{Prob}(r)=\color{red}{\bf 2.9 \times 10^{-3}} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.