Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 41 - Atomic Physics - Exercises and Problems - Page 1245: 28

Answer

(a) ${\bf 0.342}\; a_B^{-3/2}$ (b) ${\bf 0.368 }\; a_B^{-1}$

Work Step by Step

$$\color{blue}{\bf [a]}$$ The radial wave function for the hydrogen atom in the 1s state is given by $$ R_{1s}(r) = \frac{1}{\sqrt{\pi a_B^3}} e^{-r/a_B}\tag 1 $$ So at $ r = \frac{1}{2} a_B $, $$ R_{1s}\left(\frac{1}{2} a_B\right) = \frac{1}{\sqrt{\pi a_B^3}} e^{-\frac{1}{2}} $$ $$ R_{1s}\left(\frac{1}{2} a_B\right) =\color{red}{\bf 0.342}\; a_B^{-3/2} $$ $$\color{blue}{\bf [b]}$$ The probability density $ P_r(r) $ is given by $$ P_r(r) = 4\pi r^2 |R_{nl}(r)|^2 $$ For $ r = \frac{1}{2} a_B $, we get: $$ P_{1s}\left(\frac{1}{2} a_B\right) = 4\pi \left(\frac{a_B}{2}\right)^2 \left(\frac{1}{\sqrt{\pi a_B^3}} e^{-\frac{1}{2}}\right)^2 $$ $$ P_{1s}\left(\frac{1}{2} a_B\right) =\color{red}{\bf 0.368 }\; a_B^{-1} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.