Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 41 - Atomic Physics - Exercises and Problems - Page 1245: 27

Answer

(a) $ \sqrt{2} \;\hbar $ (b) $ \sqrt{6} \;\hbar $

Work Step by Step

This problem asks for the minimum and maximum values of $$ \sqrt{L_x^2 + L_y^2} $$ where $ L_x $ and $ L_y $ are the components of the angular momentum along the $x$ and $y$ axes, respectively. The total angular momentum $ L $ is given by: $$ L = \sqrt{l(l+1)} \hbar $$ where $ l = 2 $: $$ L = \sqrt{2(2+1)} \hbar = \sqrt{6}\; \hbar\tag 1 $$ We know that: $$ L^2 = L_x^2 + L_y^2 + L_z^2 $$ Thus: $$ L_x^2 + L_y^2 = L^2 - L_z^2 $$ Plug from (1); $$ L_x^2 + L_y^2 = 6\hbar^2 - L_z^2 \tag 2 $$ The possible values of $ L_z $ are given by: $$ L_z = m_l \hbar $$ $$\color{blue}{\bf [a]}$$ The minimum value of $ \sqrt{L_x^2 + L_y^2} $, for the minimum value, $ L_z $ is at its maximum, $ L_z = 2\hbar $ Plug into (2); $$ L_x^2 + L_y^2 = (\sqrt{6} \hbar)^2 - (2 \hbar)^2 = 6\hbar^2 - 4\hbar^2 = 2\hbar^2 $$ So, $$ \boxed{\sqrt{L_x^2 + L_y^2} = \sqrt{2} \;\hbar\;} $$ $$\color{blue}{\bf [b]}$$ The maximum value of $ \sqrt{L_x^2 + L_y^2} $, for the maximum value, $ L_z = 0 $, $$ L_x^2 + L_y^2 = (\sqrt{6} \hbar)^2 - 0^2 = 6\hbar^2 $$ So, $$ \boxed{\sqrt{L_x^2 + L_y^2} = \sqrt{6}\; \hbar} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.