Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 42 - Nuclear Physics - Problems - Page 1307: 86

Answer

$E = 1.09 \times 10^{-12} J = 6.8 MeV$

Work Step by Step

The equation to find radius of an atom is $r = r_0 A^{1/3} $ $r_{\alpha} = (1.2 \times 10^{-15} m) (4)^{1/3} = 1.90 \times 10^{-15} m $ $r_{Al} = (1.2 \times 10^{-15} m) (27)^{1/3} = 3.60 \times 10^{-15} m $ Distance between centers of nuclei when the atom touches each other is $r = r_{\alpha} + r_{Al} = 1.90 \times 10^{-15} m + 3.60 \times 10^{-15} m = 5.50 \times 10^{-15}m $ Now we can find the energy required, $E = \frac{q_1q_2}{4 \pi \epsilon_or} = k \frac{q_1q_2}{r} $ $E = (8.99 \times 10^9 N.m^3/C^2) \frac{(2 \times 1.602 \times 10^{-19} J) (13 \times 1.602 \times 10^{-19} J)}{5.50 \times 10^{-15}m }$ $E = 1.09 \times 10^{-12} J = 6.8 MeV$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.