Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 22 - Electric Fields - Problems - Page 657: 54

Answer

$\vec v = (1.53\times10^{6}m/s) \hat{i} - (4.34 \times10^{5} m/s) \hat{j}$

Work Step by Step

$\vec{F} =q\vec{E} \Rightarrow m\vec{a}=q\vec{E}\Rightarrow ma=qE \Rightarrow a =\frac{qE}{m}=\frac{ eE }{ m_{e}} = 8.78\times10^{11} m/s^{2}$ Because of uniform electric field, velocity will not change: $\bullet v_{x}=v_{0x}=v_{0}\cos\theta=2 \times 10^{6} \cos 40^{\circ}=1.53 \times10^{6} m/s$ $\bullet v_{y}=v_{0y}=v_{0}\sin\theta- at$ We have: $ x=v_{x}t \Rightarrow t=\frac{x}{v_{x}}=\frac{3}{1.53 \times10^{6}}=1.96 \times 10^{-6}s $ Thus, $v_{y}=v_{0y}=v_{0}\sin\theta- at=(2 \times 10^{6} \sin 40^{\circ})-(8.78\times10^{11} m/s^{2})(1.96 \times 10^{-6})=-4.34 \times 10^{5} m/s$ Final Velocity is: $\vec v = (1.53\times10^{6}m/s) \hat{i} - (4.34 \times10^{5} m/s) \hat{j}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.