Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 14 - Fluids - Problems - Page 412: 83b

Answer

$9.24\times10^{4}\;Pa$

Work Step by Step

Applying the Bernoulli’s equation between the points B and C, we obtain $p_B+\frac{1}{2}\rho v_B^2+\rho gh_B=p_C+\frac{1}{2}\rho v_C^2+\rho gh_C$ Here, $p_C=p_0$, $v_C=3.19\;m/s$ $h_C=0$, $h_B=(h_1+d+h_2)$ and the speed of the liquid at B can be assumed to be equal to $v_C$ Substituting the above values, we obtain $p_B+\frac{1}{2}\rho v_C^2+\rho g(h_1+d+h_2)=p_0+\frac{1}{2}\rho (0)^2+\rho g(0)$ or, $p_B=p_0-\rho g(h_1+d+h_2)$ or, $p_B=[1.0\times10^5-1000\times9.81\times(0.25+0.12+0.40)]\;Pa$ or, $\boxed{p_B=9.24\times10^{4}\;Pa}$ Therefore, the pressure in the liquid at the topmost point B is $9.24\times10^{4}\;Pa$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.