Answer
$0.346\;m$
Work Step by Step
The speed of the stream of water flowing through the hole is
$v=\sqrt {2gh}$
or, $v=\sqrt {2\times9.81\times0.1}\;m/s$
or, $v=1.40\;m/s$
Let the stream takes the time t to strike the floor?
For the vertical motion
$H-h=0.t+\frac{1}{2}gt^2$
or, $t=\sqrt {\frac{2(H-h)}{g}}$
Now for horizontal motion
$x=vt$
or, $x=\sqrt {2gh}\times\sqrt {\frac{2(H-h)}{g}}$
or, $x=2\sqrt {h(H-h)}$
Substituting the given values
or, $x=2\sqrt {0.1\times(0.4-0.1)}\;m$
or, $x=0.346\;m$
Therefore, the stream strikes the floor at a distance $0.346\;m$ from the bottom of the tank.