Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 14 - Fluids - Problems - Page 411: 70

Answer

$-2.51\;J$

Work Step by Step

The water flows steadily through the pipe. Therefore, the flow within any tube of flow obeys the equation of continuity: $A_{left}v_{left}=A_{mid}v_{mid}$ or, $v_{left}=\frac{A_{mid}v_{mid}}{A_{left}}$ or, $v_{left}=\frac{R^2v_{mid}}{4R^2}$ or, $v_{left}=\frac{v_{mid}}{4}$ and $A_{right}v_{right}=A_{mid}v_{mid}$ or, $v_{right}=\frac{A_{mid}v_{mid}}{A_{right}}$ or, $v_{right}=\frac{R^2v_{mid}}{9R^2}$ or, $v_{right}=\frac{v_{mid}}{9}$ Now, the net work done on $0.400\;m^3$ of the water as it moves from the left section to the right section is equals to the change in kinetic energy $W=E_{right}-E_{left}$ or, $W=\frac{1}{2}m(v^2_{right}-v^2_{left})$ or, $W=\frac{1}{2}\rho V(v^2_{right}-v^2_{left})$ or, $W=\frac{1}{2}\rho V v^2_{mid}(\frac{1}{9^2}-\frac{1}{4^2})$ or, $W=\frac{1}{2} \times 1000\times 0.4\times 0.5^2_{mid}\times(\frac{1}{9^2}-\frac{1}{4^2})\;J$ or, $W=-2.51\;J$ Therefore, the net work done on $0.400\;m^3$ of the water as it moves from the left section to the right section is $-2.51\;J$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.