College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 27 - Quantum Physics - Learning Path Questions and Exercises - Exercises - Page 935: 9

Answer

3.7723678×1019 quanta of radiation emitted per second per square meter.

Work Step by Step

Given temperature of blackbody T= 500 $^{0}C$ absolute kelvin temperature = temperature in $^{0}C$ + 273 temperature of blackbody T (in kelvin) = 500 +273= 773 K From Wiens displacement law $\lambda_{max} T= 2.90\times10^{-3}m.K$ $\lambda_{max}= \frac{ 2.90\times10^{-3}m.K}{T}$ $\lambda_{max}= \frac{ 2.90\times10^{-3}m.K}{773 K}$ $\lambda_{max}=0.003751617\times10^{-3} m$ $\lambda_{max}=3.751617\times10^{-6} m= 3751.617\times10^{-9} m=3751.6 nm$ frequency corresponding to above wavelength $f=\frac{c}{\lambda}$ $f=\frac{3\times10^{8} m/s}{3.751617\times10^{-6} m}$ $f=0.799655\times10^{14}/s$ $f=7.99655\times10^{13} Hz$ Energy of photon corresponding to above frequency $E=hf$ $E=6.63\times10^{-34} J.s\times7.99655\times10^{13} Hz$ $E=53.0171\times10^{-21}J$ $E=5.30171\times10^{-20}J$ Intensity of emitted radiation = $2.0W/m^ {2}$=$2.0J/s.m^ {2}$. $E=5.30171\times10^{-20}J$ corresponds to 1 photon so $1 J$ energy is equal to $\frac{1}{5.30171\times10^{-20}}$ Photon so $ 2 J$ energy is equal to $\frac{2}{5.30171\times10^{-20}}$ Photon so $ 2 J$ energy = $0.37723678\times10^{20} $ so $ 2 J$ energy = $3.7723678\times10^{19} $ Intensity $2.0J/s.m^ {2}$ means $3.7723678\times10^{19} $ quanta of radiation emitted per second per square meter.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.