College Physics (7th Edition)

Published by Pearson
ISBN 10: 0-32160-183-1
ISBN 13: 978-0-32160-183-4

Chapter 27 - Quantum Physics - Learning Path Questions and Exercises - Exercises - Page 935: 15

Answer

Work function of the surface is $\phi_{0}=3.945\times10^{-19}J$

Work Step by Step

given maximum kinetic energy of photoelectrons is $K_{max}=6.0\times10^{-19}J$ wavelength of incident light is $\lambda=200nm=200\times10^{-9}m=2\times10^{-7}m$ $E=hf$, since $f=\frac{c}{\lambda}$ Energy of a Quanta of light is $E=hf=\frac{hc}{\lambda}$ $h=6.63\times10^{-34} J.s$, $c=3\times10^{8}m/s$, $\lambda=2\times10^{-7}m$ putting these values we will get $E=hf=\frac{6.63\times10^{-34} J.s\times3\times10^{8}m/s}{2\times10^{-7}m}$ $E=hf=9.945\times10^{-19}J$ From equation 27.7 $hf= K_{max} + \phi_{0}$ where $hf$ is energy of incident photon, $K_{max}$ is maximum kinetic energy of photoelectron, $\phi_{0}$ is work function of the surface. from above equation $\phi_{0} =hf-K_{max}$ putting values of $K_{max}$ and $ hf$ in this equation we will get $\phi_{0}=9.945\times10^{-19}J-6.0\times10^{-19}J$ $\phi_{0}=3.945\times10^{-19}J$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.