Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 6 - Exercises and Problems - Page 111: 77

Answer

$(a)\space 2P_{0}$ $(b)\space \frac{1}{2}(3+\sqrt 3)t_{0}$

Work Step by Step

(a) Given that, $P(t)=2P_{0}(1-\frac{(t-t_{0})^{2}}{t_{0}^{2}})$ Let's simplify this equation, $P(t)=2P_{0}(1-\frac{(t^{2}-2t_{0}t+t_{0}^{2})}{t_{0}^{2}})$ $P(t)=2P_{0}(\frac{t_{0}^{2}-t^{2}+2t_{0}t-t_{0}^{2}}{t_{0}^{2}})=-2P_{0}(\frac{t^{2}-2t_{0}t}{t_{0}^{2}})-(1)$ Let's differentiate this equation by t & we get, $\frac{d}{dt}P(t)=\frac{-2P_{0}}{t_{0}^{2}}(\frac{d}{dt}{t^{2}-2t_{0}\frac{d}{dt}t})$ $\frac{d}{dt}P(t)=\frac{-2P_{0}}{t_{0}^{2}}(2t-2t_{0})-(2) $ When P(T) in its maximum value, $\frac{d}{dt}P(t)=0$ $(2)=\gt\space -(\frac{2P_{0}}{t_{0}^{2}})(2t-2t_{0})=0$ $2t-2t_{0}=0$ $t=t_{0}$ At this time the power of the second machine gets its maximum value. Let's apply this value in equation (1) $P(t_{0})=-2P_{0}(\frac{t_{0}^{2}-2t_{0}^{2}}{t_{0}^{2}})=\gt P(t_{0})=2P_{0}$ (b) To find the earliest time at which both machines have done the same amount of work, we have to intergrate equation (1) by t. $\int P(t)\space dt=-(\frac{2P_{0}}{t_{0}^{2}})(\int t^{2}\space dt-2t_{0}\int t\space dt)$ $W(t) =-(\frac{2P_{0}}{t_{0}^{2}})(t^{2}/3-2t_{0}t^{2}/2)-(3)$ At that time worksdone by the machine 1 is $= P_{0}t-(4)$ $(3)=(4)=\gt$ $P_{0}t=-(\frac{2P_{0}}{t_{0}^{2}})(t^{2}/3-2t_{0}t^{2}/2)$ $t_{0}^{2}=-\frac{2}{3}t^{2}+2t_{0}t$ $3t_{0}^{2}=-{2}t^{2}+6t_{0}t$ $t^{2}-3t_{0}t+\frac{3}{2}t_{0}^{2}=0$ To find the value of t we use the equation of roots of quadratic equation $t=\frac{-(-3t_{0})\pm\sqrt {9t_{0}^{2}-6t_{0}^{2}}}{2}=\frac{3t_{0}\pm t_{0}\sqrt 3}{2}$ $t=\frac{1}{2}(3-\sqrt 3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.