Answer
$- {\text{8}}{\text{.2}} \times {\text{1}}{{\text{0}}^4}{\text{ J}}$
Work Step by Step
\[\begin{gathered}
{\mathbf{Known}} \hfill \\
\hfill \\
{\text{Volume of gas produce = 0}}{\text{.75 }}{{\text{m}}^3} \hfill \\
{\text{Pressure (constant) = 110}}{\text{.0 kPa}} \hfill \\
{\text{Work done by the gas (J) = ?}} \hfill \\
\hfill \\
{\mathbf{Calculations}} \hfill \\
\hfill \\
{\text{Using the formula }} \hfill \\
{\text{w = }} - {\text{p}}\Delta {\text{V}} \hfill \\
{\text{ = }} - {\text{(110}}{\text{.0kPa)(0}}{\text{.75 }}{{\text{m}}^3} - {\text{ 0 }}{{\text{m}}^3}) \hfill \\
{\text{ = }} - {\text{82}}{\text{.5 kPa}} \cdot {{\text{m}}^3} \hfill \\
{\text{The initial volume is 0 }}{{\text{m}}^3}{\text{ because initially,}} \hfill \\
{\text{there is no gaseous product}}{\text{.}} \hfill \\
\hfill \\
{\text{Since 1 Joule is equal to 1 Pa - }}{{\text{m}}^3},{\text{ so}} \hfill \\
{\text{w = }} - {\text{82}}{\text{.5 kPa}} \cdot {{\text{m}}^3} \times \dfrac{{1000{\text{ Pa}}}}{{{\text{1kPa}}}} \hfill \\
{\text{w = }} - 82500{\text{ J }} \approx {\text{ }}\boxed{ - {\text{8}}{\text{.2}} \times {\text{1}}{{\text{0}}^4}{\text{ J}}} \hfill \\
\end{gathered} \]