Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.5 Double-Angle Identities - 5.5 Exercises - Page 230: 23

Answer

$$\cos2\theta=\frac{2-\sec^2\theta}{\sec^2\theta}$$ Both sides are equal, so the equation is an identity.

Work Step by Step

$$\cos2\theta=\frac{2-\sec^2\theta}{\sec^2\theta}$$ We start from the right side and try to make it equal to the left side. $$X=\frac{2-\sec^2\theta}{\sec^2\theta}$$ - Reciprocal Identity: $\sec\theta=\frac{1}{\cos\theta}$, meaning $\sec^2\theta=\frac{1}{\cos^2\theta}$ Then, $$X=\frac{2-\frac{1}{\cos^2\theta}}{\frac{1}{\cos^2\theta}}$$ $$X=\frac{\frac{2\cos^2\theta-1}{\cos^2\theta}}{\frac{1}{\cos^2\theta}}$$ $$X=\frac{2\cos^2\theta-1}{1}$$ $$X=2\cos^2\theta-1$$ - Double-Angle Identity: $2\cos^2\theta-1=\cos2\theta$ Thus, $$X=\cos2\theta$$ Therefore, $$\cos2\theta=\frac{2-\sec^2\theta}{\sec^2\theta}$$ Since both sides are equal, the equation is an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.