Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.5 Double-Angle Identities - 5.5 Exercises - Page 230: 19

Answer

$$(\cos2x+\sin2x)^2=1+\sin4x$$ The equation is an identity. The proof is shown below.

Work Step by Step

$$(\cos2x+\sin2x)^2=1+\sin4x$$ We tackle from the left side. $$X=(\cos2x+\sin2x)^2$$ Apply the expansion $(a+b)^2=a^2+2ab+b^2$ for $a=\cos2x$ and $b=\sin2x$. $$X=\cos^22x+2\cos2x\sin2x+\sin^22x$$ $$X=(\cos^22x+\sin^22x)+(2\cos2x\sin2x)$$ - Pythagorean Identity: $\cos^22x+\sin^22x=1$ - Double-Angle Identity: $2\cos2x\sin2x=\sin(2\times2x)=\sin4x$ (for $\sin2\theta=2\sin\theta\cos\theta$) $$X=1+\sin4x$$ Thus, $$(\cos2x+\sin2x)^2=1+\sin4x$$ The equation is an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.