Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 5 - Trigonometric Identities - Section 5.5 Double-Angle Identities - 5.5 Exercises - Page 230: 18

Answer

$$\sec2x=\frac{\sec^2x+\sec^4x}{2+\sec^2x-\sec^4x}$$ The equation is an identity, as proved below.

Work Step by Step

$$\sec2x=\frac{\sec^2x+\sec^4x}{2+\sec^2x-\sec^4x}$$ We tackle the more complicated side, which is the right side. $$X=\frac{\sec^2x+\sec^4x}{2+\sec^2x-\sec^4x}$$ $\sec x$ can be written as $\sec x=\frac{1}{\cos x}$. Therefore, $$\sec^2x=\frac{1}{\cos^2x}\hspace{2cm}\sec^4x=\frac{1}{\cos^4x}$$ $$X=\frac{\frac{1}{\cos^2x}+\frac{1}{\cos^4x}}{2+\frac{1}{\cos^2x}-\frac{1}{\cos^4x}}$$ $$X=\frac{\frac{\cos^2x+1}{\cos^4x}}{\frac{2\cos^4x+\cos^2x-1}{\cos^4x}}$$ $$X=\frac{(\cos^2x+1)\cos^4x}{(2\cos^4x+\cos^2x-1)\cos^4x}$$ $$X=\frac{\cos^2x+1}{2\cos^4x+\cos^2x-1}$$ We examine the denominator: $$2\cos^4x+\cos^2x-1=2\cos^4x+2\cos^2x-\cos^2x-1$$ $$2\cos^4x+\cos^2x=2\cos^2x(\cos^2x+1)-(\cos^2x+1)$$ $$2\cos^4x+\cos^2x=(\cos^2x+1)(2\cos^2x-1)$$ Thus, $$X=\frac{\cos^2x+1}{(\cos^2x+1)(2\cos^2x-1)}$$ $$X=\frac{1}{2\cos^2x-1}$$ From Double-Angle Identity: $2\cos^2x-1=\cos2x$ $$X=\frac{1}{\cos2x}$$ From Reciprocal Identity: $\frac{1}{\cos2x}=\sec2x$ $$X=\sec2x$$ Therefore the equation has been verified to be an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.