Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 208: 22

Answer

$$\frac{1}{\sin\alpha-1}-\frac{1}{\sin\alpha+1}=-2\sec^2\alpha$$

Work Step by Step

$$A=\frac{1}{\sin\alpha-1}-\frac{1}{\sin\alpha+1}$$ $$A=\frac{\sin\alpha+1}{(\sin\alpha-1)(\sin\alpha+1)}-\frac{\sin\alpha-1}{(\sin\alpha-1)(\sin\alpha+1)}$$ $$A=\frac{\sin\alpha+1-(\sin\alpha-1))}{(\sin\alpha-1)(\sin\alpha+1)}$$ $$A=\frac{\sin\alpha+1-\sin\alpha+1}{(\sin\alpha-1)(\sin\alpha+1)}$$ $$A=\frac{2}{(\sin\alpha-1)(\sin\alpha+1)}$$ $$A=\frac{2}{\sin^2\alpha-1}$$ (for $a^2-b^2=(a-b)(a+b)$) - Pythagorean Identity: $$\cos^2\alpha=1-\sin^2\alpha$$ $$-\cos^2\alpha=\sin^2\alpha-1$$ Therefore, $$A=\frac{2}{-\cos^2\alpha}$$ $$A=-2(\frac{1}{\cos\alpha})^2$$ - Reciprocal Identity: $$\sec\alpha=\frac{1}{\cos\alpha}$$ So, $$A=-2\sec^2\alpha$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.