Answer
$P(z > 0.25)$ $= 0.4013$
Work Step by Step
$\mu$ = 266, $\sigma$ = 16
Want to find $P( x > 270 )$
i) Convert 270 to a z-score:
z = $\frac{x - \mu}{\sigma}$
z = $\frac{270 - 266}{16}$
z= 0.25
ii) $P(x > 270) = P(z > 0.25)$
$P(z > 0.25)$
$= 1 - P( z < 0.25)$
$= 1- 0.5987$
$= 0.4013$