Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 14 - Section 14.2 - Assess Your Understanding - Applying the Concepts - Page 698: 17o

Answer

Confidence interval: $2343.05\lt y\lt2799.75$ We are 95% confident that the mean price of 52-inch 3D televisions is between 2343.05 and 2799.75 dollars.

Work Step by Step

$s_e=269.049$ (item (i)) $∑(x_i-x ̅)^2=24.5358^2=602.0055$ (item (m)) $x ̅=\frac{40+40+46+46+46+52+55+60+65}{9}=50$ $n=9$, so: $d.f.=n-2=7$ $level~of~confidence=(1-α).100$% $95$% $=(1-α).100$% $0.95=1-α$ $α=0.05$ $t_{\frac{α}{2}}=t_{0.025}=2.365$ (According to Table VI, for d.f. = 7 and area in right tail = 0.025) $Lower~bound=ŷ -t_{\frac{α}{2}}.s_e\sqrt {\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=2561.4-2.365\times269.049\sqrt {\frac{1}{9}+\frac{(52-50)^2}{602.0055}}=2343.05$ $Upper~bound=ŷ +t_{\frac{α}{2}}.s_e\sqrt {\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=2561.4+2.365\times269.049\sqrt {\frac{1}{9}+\frac{(52-50)^2}{602.0055}}=2799.75$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.