Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 14 - Section 14.2 - Assess Your Understanding - Applying the Concepts - Page 698: 11b

Answer

Confidence interval: $4147.2\lt y\lt4652.4$ We are 95% confident that the mean 28-day strength of all concrete whose 7-day strength is 2550 psi is between 4147.2 and 4652.4 psi.

Work Step by Step

From problem 15 from Section 14.1: $s_e=271.042$ $∑(x_i-x ̅)^2=1318.773^2=1739162$ $x ̅=\frac{2300+3390+2430+2890+3330+2480+3380+2660+2620+3340}{10}=2882$ $n=10$, so: $d.f.=n-2=8$ $level~of~confidence=(1-α).100$% $95$% $=(1-α).100$% $0.95=1-α$ $α=0.05$ $t_{\frac{α}{2}}=t_{0.025}=2.306$ (According to Table VI, for d.f. = 8 and area in right tail = 0.025) $Lower~bound=ŷ -t_{\frac{α}{2}}.s_e\sqrt {\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=4399.8-2.306\times271.042\sqrt {\frac{1}{10}+\frac{(2550-2882)^2}{1739162}}=4147.2$ $Upper~bound=ŷ +t_{\frac{α}{2}}.s_e\sqrt {\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=4399.8+2.306\times271.042\sqrt {\frac{1}{10}+\frac{(2550-2882)^2}{1739162}}=4652.4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.