Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 14 - Section 14.2 - Assess Your Understanding - Applying the Concepts - Page 698: 13d

Answer

Confidence interval: $1.441\lt ŷ\lt8.037$ We are 90% confident that the rate of return on United Technologies stock if the rate of return on the S&P 500 for a randomly selected month is 4.2% is between 1.441 and 8.037 percent.

Work Step by Step

From problem 17 from Section 14.1: $s_e=1.70053$ (see 17b: S in the Model Summary) $∑(x_i-x ̅)^2=(\frac{s_e}{SE~Coef})^2=(\frac{1.70053}{0.0985})^2=298.055$ (see 17b) $x ̅=\frac{1.48-8.20-5.39+6.88-4.74+8.76+3.69-0.23+6.53+2.26+3.20}{11}=1.295$ $n=11$, so: $d.f.=n-2=9$ $level~of~confidence=(1-α).100$% $90$% $=(1-α).100$% $0.9=1-α$ $α=0.1$ $t_{\frac{α}{2}}=t_{0.05}=1.833$ (According to Table VI, for d.f. = 9 and area in right tail = 0.05) $Lower~bound=ŷ -t_{\frac{α}{2}}.s_e\sqrt {1+\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=4.739-1.833\times1.70053\sqrt {1+\frac{1}{11}+\frac{(4.2-1.295)^2}{298.055}}=1.441$ $Upper~bound=ŷ +t_{\frac{α}{2}}.s_e\sqrt {1+\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=4.739+1.833\times1.70053\sqrt {1+\frac{1}{11}+\frac{(4.2-1.295)^2}{298.055}}=8.037$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.