Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 14 - Section 14.2 - Assess Your Understanding - Applying the Concepts - Page 698: 14d

Answer

Confidence interval: $68.93\lt ŷ\lt169.64$ We are 95% confident that the weight of an American black bear that is 154.5 cm long is between 68.93 and 169.64 kg.

Work Step by Step

From problem 18 from Section 14.1: $s_e=20.8577$ (see 18b: S in the Model Summary) $∑(x_i-x ̅)^2=(\frac{s_e}{SE~Coef})^2=(\frac{20.8577}{0.541})^2=1486.41$ (see 18c) $x ̅=\frac{139.0+138.0+139.0+120.5+149.0+141.0+141.0+150.0+166.0+151.5+129.5+150.0}{12}=142.88$ $n=12$, so: $d.f.=n-2=10$ $level~of~confidence=(1-α).100$% $95$% $=(1-α).100$% $0.95=1-α$ $α=0.05$ $t_{\frac{α}{2}}=t_{0.025}=2.228$ (According to Table VI, for d.f. = 10 and area in right tail = 0.025) $Lower~bound=ŷ -t_{\frac{α}{2}}.s_e\sqrt {1+\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=119.283-2.228\times20.8577\sqrt {1+\frac{1}{12}+\frac{(154.5-142.88)^2}{1486.41}}=68.93$ $Upper~bound=ŷ +t_{\frac{α}{2}}.s_e\sqrt {1+\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=119.283+2.228\times20.8577\sqrt {1+\frac{1}{12}+\frac{(154.5-142.88)^2}{1486.41}}=169.64$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.