Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 14 - Section 14.2 - Assess Your Understanding - Applying the Concepts - Page 698: 12b

Answer

Confidence interval: $0.8272\lt y\lt0.9708$ We are 95% confident that the mean nicotine content of all cigarettes whose tar content is 12 mg is between 0.8272 and 0.9708 mg.

Work Step by Step

From problem 16 from Section 14.1: $s_e=0.1121$ $∑(x_i-x ̅)^2=24.366^2=593.702$ $x ̅=\frac{5+16+24+24+8+9+9+24+15+18+17+5+10}{13}=14.15$ $n=13$, so: $d.f.=n-2=11$ $level~of~confidence=(1-α).100$% $95$% $=(1-α).100$% $0.95=1-α$ $α=0.05$ $t_{\frac{α}{2}}=t_{0.025}=2.201$ (According to Table VI, for d.f. = 11 and area in right tail = 0.025) $Lower~bound=ŷ -t_{\frac{α}{2}}.s_e\sqrt {\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=0.899-2.201\times0.1121\sqrt {\frac{1}{13}+\frac{(12-14.15)^2}{593.702}}=0.8272$ $Upper~bound=ŷ +t_{\frac{α}{2}}.s_e\sqrt {\frac{1}{n}+\frac{(x^*-x ̅)^2}{∑(x_i-x ̅)^2}}=0.899+2.201\times0.1121\sqrt {\frac{1}{13}+\frac{(12-14.15)^2}{593.702}}=0.9708$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.