An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.6 The Variance - Questions - Page 158: 17

Answer

a) See explanation b) $\color{blue}{\frac{(b-a)^2}{12}}$

Work Step by Step

a) We show that the pdf of $Y$ is a uniform distribution on $[a,b]$, i.e., $f_Y(y) = \dfrac{1}{b-a},\ a \le y \le b.$ The cdf of $Y$ is, $\begin{align*} F_Y(y) &= P(Y \le y),\ a \le y \le b \\ &= P((b-a)U + a \le y) \\ &= P\left( U \le \frac{y-a}{b-a}\right),\ a \le y \le b \\ &= \int_a^{\large \frac{y-a}{b-a}} 1\ du \quad \left[\ \text{since}\ f_U(u) = 1,\ 0 \le u \le 1,\ \right] \\ &= u\ \biggr\vert_0^{\large\frac{y-a}{b-a}} \\ F_Y(y) &= \frac{y-a}{b-a},\ a \le y \le b. \end{align*}$ Thus, $\begin{align*} f_Y(y) &= F'(y) \\ &= \frac{d}{dy}\left(\frac{y-a}{b-a}\right),\ a \lt y \lt b \\ f_Y(y) &= \frac{1}{b-a},\ a \lt y \lt b. \end{align*}$ Since $P(Y=a)=P(Y=b)=0$, we can write $f_Y(y) = \dfrac{1}{b-a},\ a\le y \le b,$ so that the pdf of $Y$ is that of a uniform distribution on $[a,b]$. b) $\begin{align*} E(Y) &= \int_{\mathbb{R}} y \cdot f_Y(y)\ dy \qquad [\ \text{Definition of}\ E(Y)\ ] \\ &= \int_a^b y\cdot \frac{1}{b-a}\ dy \qquad \left[\ \text{since}\ f_Y(y)= \frac{1}{b-a},\ a\le y \le b\ \right] \\ &= \left(\frac{y^2}{2}\cdot\frac{1}{b-a}\ \right\vert_a^b \\ &= \frac{b^2-a^2}{2} \cdot \frac{1}{b-a} \\ &= \frac{(b-a)(b+a)}{2} \cdot \frac{1}{b-a} \\\ E(Y)&= \frac{b+a}{2} \\ \mu &= \frac{b+a}{2} \end{align*}$ $\begin{align*} E(Y^2) &= \int_{\mathbb{R}} y^2 \cdot f_Y(y)\ dy \qquad [\ \text{Definition of}\ E(Y^2)\ ] \\ &= \int_a^b y^2\cdot \frac{1}{b-a}\ dy \qquad \left[\ \text{since}\ f_Y(y)= \frac{1}{b-a},\ a\le y \le b\ \right] \\ &= \left(\frac{y^3}{3}\cdot\frac{1}{b-a}\ \right\vert_a^b \\ &= \frac{b^3-a^3}{3} \cdot \frac{1}{b-a} \\ &= \frac{(b-a)(b^2+ab+b^2)}{3} \cdot \frac{1}{b-a} \\\ E(Y^2)&= \frac{b^2+ab+a^2}{3} \end{align*}$ By Theorem 3.6.1, since $\mu= \dfrac{b+a}{2}$ exists and $E(Y^2) = \dfrac{b^2+ab+a^2}{3}$ is finite, $\begin{align*} \text{Var}(Y) &= E(Y^2) - \mu^2 \\ &= \frac{b^2+ab+a^2}{3} - \left(\frac{b+a}{2}\right)^2 \\ &= \frac{b^2+ab+a^2}{3} - \frac{b^2+2ab+a^2}{4} \\ &= \frac{(4b^2+4ab+4a^2)-(3b^2+6ab+3a^2)}{12} \\ &= \frac{b^2-2ab+a^2}{12} \\ \color{blue}{\text{Var}(Y)}\ &\color{blue}{= \frac{(b-a)^2}{12}} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.