An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.6 The Variance - Questions - Page 158: 12

Answer

$\color{blue}{e^{-3} \;\approx\; 0.05}$

Work Step by Step

Since $Y$ is an exponential random variable with $\lambda = 2$, then $f_Y(y) = \lambda e^{-\large \lambda y} = 2e^{-\large 2y},\ y \ge 0$ and * $F_Y(y) = 1- e^{\large - \lambda y} = 1- e^{\large -2y}$ by Exercise 3.4.8 (p. 136), * $\mu_Y = E(Y) = \dfrac{1}{\lambda} = 1/2$ by Exercise 3.5.11 (p. 146), and * $\text{Var}(Y) = \dfrac{1}{\lambda^2} = 1/2^2$ by Exercise 3.6.11 (p. 158). Thus, $\begin{align*} P\left(Y \gt E(Y) + 2\sqrt{\text{Var}(Y)} \right) &= P\left(Y \gt \frac{1}{2} + 2\sqrt{\left(\frac{1}{2}\right)^2} \right) \\ &= P\left(Y \gt \frac{1}{2} + 2\cdot \frac{1}{2}\right) \\ &= P\left(Y \gt \frac{3}{2}\right) \\ &= 1 - P\left(Y \le \frac{3}{2}\right) \\ &= 1 - F_Y(3/2) \\ &= 1 - \left(1 - e^{-\large 2(3/2)}\right) \\ &= e^{-\large 3} \\ \color{blue}{P\left(Y \gt E(Y) + 2\sqrt{\text{Var}(Y)} \right)}\ &\color{blue}{= e^{-3} \;\approx\; 0.0498 \;\approx\; 0.05} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.